» World Cement đã mời các chuyên gia trong lĩnh vực thiết kế vòi đốt lò chia sẻ những hiểu biết sâu sắc của họ về một loạt các chủ đề có liên quan bao gồm nhiên liệu thay thế đến các thiết kế vượt trội. Những đóng góp cho ấn bản năm nay đến từ: FCT Combustion, KHD Humboldt Wedag, ROCKTEQ, và Unitherm Cemcon.
Sự thay đổi về tính nhất quán và chất lượng của nhiên liệu thay thế có thể đặt ra thách thức đối với việc vận hành tin cậy vòi đốt lò. Có thể thực hiện điều gì để giảm thiểu điều này?
FCT Combustion: Nhiên liệu khác nhau có nghĩa là cỡ hạt, tỷ trọng, độ ẩm và nhiệt trị khác nhau cùng với thời gian sấy, đánh lửa và đốt cháy cũng như động lực học quá trình đốt cháy khác nhau. Loại nhiên liệu thay thế (AF), sự thay đổi về chủng loại và tỷ lệ được đưa tới vòi đốt có thể ảnh hưởng tới biến dạng độ dài và dòng nhiệt bên trong lò cũng như lượng khí phát thải. Hầu hết các hệ thống định lượng nhiên liệu đều hoạt động theo nguyên lý khối lượng, nghĩa là nhiệt năng được cấp tới vòi đốt có thể thay đổi qua thời gian, ngay cả khi việc định lượng theo khối lượng ổn định, do các đặc tính nhiên liệu thay đổi.
Để giảm thiểu toàn bộ những ảnh hưởng này, vòi đốt phải được thiết kế sao cho có thể vận hành thật linh hoạt để kiểm soát hiệu quả khí động học và quá trình đốt, tăng cường đưa gió hai vào ngọn lửa. FCT khuyến nghị sử dụng Vòi đốt Turbu-Flex™ của chúng tôi với thiết kế đầu khí hướng trục độc đáo, độ chảy rối được cấu hình lại, khí nâng AF được chia ra để nâng liệu từ đáy đường ống vận chuyển lên và khuếch tán nhiên liệu vào trong gió một và gió hai khi rời khỏi đầu vòi đốt.
Ngoài những thách thức tại vòi đốt lò, điều quan trọng cần phải đề cập đến đó là một số nhiên liệu vốn dĩ đã phù hợp hơn với calciner và sẽ không vấn đề gì nếu khắc phục được những khó khăn khi sử dụng chúng tại lò nung, khi đó sẽ dễ dàng sử dụng chúng tại calciner hơn rất nhiều. Những nhiên liệu như vậy bao gồm những nhiên liệu có độ ẩm cao hơn, nhiệt trị thấp hơn, cỡ hạt lớn hơn, thời gian đốt cháy cần thiết lâu hơn, hoặc hàm lượng chất bốc thấp, cùng với những đặc tính khác nữa.
Theo nguyên tắc chung, mục tiêu là phải đạt được việc dễ dàng đốt cháy AF ở vòi đốt lò, và khó đốt nhiên liệu hơn ở calciner. Trong trường hợp không có sẵn calciner, sự kết hợp giữa khó và dễ đốt AF hơn sẽ là giải pháp hứa hẹn tốt nhất để gia tăng tỷ lệ thay thế tổng thể, ít tác động hơn tới quá trình vận hành lò. Các giải pháp khác cũng có thể là sử dụng các vòi đốt kiểu hành tinh hoặc mô hình CFD.
Sử dụng khí hydro làm nhiên liệu trong sản xuất xi măng cũng là một xu hướng mới nổi có thể tác động tới hiệu suất vòi đốt. Do chi phí cao và tính sẵn có thấp hiện tại, khí hydro có thể được xem xét là một AF trong ngắn hạn và trung hạn. Việc sản xuất hydro thông qua điện phân cũng tạo ra khí oxi, do đó, sự sẵn có của một hoặc cả hai loại khí này cho các hệ thống vòi đốt sẽ mở ra những khả năng mới để kiểm soát các đặc tính ngọn lửa được tối ưu hóa cho sản xuất xi măng.
KHD: Có hai khía cạnh phải xem xét ở đây: bản thân AF và sau đó là thiết kế vòi đốt.
Các nhà máy xi măng trước hết cần cân nhắc, xem xét việc tối ưu hóa chuỗi cung ứng AF của họ để giảm thiểu sự biến động của nhiên liệu. Việc lựa chọn được nhà cung cấp nhiên liệu ở đây là quan trọng. Hãy lựa chọn các nhà cung cấp có uy tín và đáng tin cậy để cung cấp AF chất lượng ổn định và có mục tiêu thiết lập mối quan hệ đối tác lâu dài để đảm bảo nguồn cung cấp nhiên liệu ổn định và đáng tin cậy. Các nhà máy cũng nên xem xét việc phối trộn các AF khác nhau để đạt được thành phần nhiên liệu ổn định hơn.
Khi nói đến thiết kế vòi đốt, công nghệ vòi đốt đa nhiên liệu hiện đại đã cho phép các nhà máy xi măng tối ưu hóa được quá trình đốt khi sử dụng AF. Các vòi đốt này được thiết kế dành riêng cho điều chỉnh và tương tác với chất lượng AF thực tế với những đặc điểm sau:
- Gió sơ cấp (gió một): Vòi đốt phải được thiết kế với lượng gió sơ cấp dự trữ cho phép tăng cường quá trình đốt cháy và gia tăng động lượng của vòi đốt.
- Các đặc tính nhiên liệu AF: Miệng vòi đốt phải được thiết kế với khả năng cung cấp khí phân phối nhằm phân phối các hạt nhiên liệu trong ngọn lửa để đánh lửa nhanh và đốt cháy hết hoàn toàn.
- Nhiên liệu thay thế: Hỗn hợp nhiên liệu toàn phần được đốt cháy tại vòi đốt phải đồng nhất và ổn định. Do đó, khi AF chất lượng thấp được sử dụng cần phải được cân bằng bằng AF chất lượng cao hơn. Mạch vòng điều chỉnh này có thể thực hiện được bằng bộ tối ưu hóa theo thời gian thực (Real Time Optimiser) của KHD, là một phần của bộ kỹ thuật số ProMax KHD.
KHD cung cấp vòi đốt chính PYROJET và vòi đốt kiểu hành tinh PYROSAT để đốt cháy tin cậy AF trong lò quay.
ROCKTEQ: Tại ROCKTEQ, chúng tôi dự đoán những thay đổi về chủng loại và chất lượng của AF trong những năm tới. Có một sự chuyển đổi đáng chú ý hướng tới việc gia tăng sử dụng các nhiên liệu trung hòa CO2, như các nhiên liệu sinh học có nguồn gốc từ các nguồn như vỏ trấu, rơm rạ, dư lượng cây hướng dương, dư lượng lõi ngô nghiền mịn, và nhiên liệu gốc rác thải có chưa thành phần hữu cơ, như nhiên liệu rắn thu hồi (SRF) (chủ yếu là nhựa, giấy, sợi vải…), có sẵn dồi dào ở những vùng nhất định. Các nhiên liệu sinh học thuần khiết thường có nhiệt trị thấp (LCV) thấp hơn so với SRF và có thể có hàm lượng độ ẩm không ổn định phụ thuộc vào các điều kiện thời tiết. Ngoài ra, AF giàu LCV được khuyến khích sử dụng, nếu có thể tiếp cận được, để ổn định các biến động bằng cách điều chỉnh nhiệt trị trung bình hỗn hợp của AF.
Với mức thay thế nhiệt (TSR) ngày càng tăng, điều quan trọng là phải giám sát liên tục các AF này. Các thiết bị lấy mẫu tự động có thể được sử dụng để đảm bảo vận hành lò ổn định hoặc, ít nhất, có thể chủ động kiểm soát được quá trình nung luyện clinker phù hợp với chất lượng nhiên liệu thay đổi.
Để xử lý sự biến động nhiệt trị của AF hoặc tận dụng các nhiên liệu có nhiệt trị thấp, ROCKTEQ đã phát triển một hệ thống được gọi là AF-Booster®. Hệ thống này sử dụng nhiệt thừa để sấy nhiên liệu sinh học và phân loại chúng trước khi đưa vào quá trình gia nhiệt tại điểm phun phù hợp nhất, đó là ở vòi đốt chính hoặc (các) vòi đốt kiểu hành tinh. Một lợi điểm nữa là giảm được độ ẩm nhiên liệu và lượng khí trong lò, tối ưu hóa hiệu suất lò và quạt ID.
Unitherm Cemcon: Để đảm bảo vận hành vòi đốt tin cậy với AF, các chương trình sau nên được xem xét cân nhắc:
- Kiểm soát chất lượng: Thực hiện các biện pháp nghiêm ngặt để kiểm soát cỡ hạt, hàm lượng độ ẩm và các yếu tố khác quan trọng để đảm bảo sự ổn định của nhiên liệu.
- Tiêu chuẩn hóa: Phát triển các quy trình xử lý và phối trộn nhiên liệu để đảm bảo chất lượng ổn định giữa các nhà cung cấp và các lô hàng.
- Công nghệ vòi đốt thích hợp: Đầu tư vào các vòi đốt có thể điều chỉnh được các thông số đốt theo thời gian thực, như các sản phẩm của Unitherm được trang bị Công nghệ M.A.S, tối ưu hóa năng suất đối với các nhiên liệu có chất lượng thay đổi.
- Đào tạo: Đào tạo người vận hành về xử lý AF một cách hiệu quả. Thực hiện các biện pháp này để giảm thiểu sự biến động, đảm bảo vận hành vòi đốt tin cậy và hiệu quả với AF.
Một số nhà máy xi măng đang xem xét việc sử dụng nhiên liệu khí hydro. Cần phải cân nhắc những gì về thiết kế vòi đốt khi sử dụng khí hydro?
FCT Combustion: Có một số điều cân nhắc, bao gồm:
- Ở vòi đốt chính, sự truyền nhiệt bức xạ chiếm ưu thế và khí hydro tạo ra rất ít sự truyền nhiệt bức xạ so với: nhiên liệu rắn hoặc các nhiên liệu ra muội carbon (như HFO và ở một mức độ nào đó là khí tự nhiên). Do đó, việc sử dụng khí hydro cùng với AF như RDF hoặc sinh chất, dầu sinh học và tương tự, là cần thiết để duy trì đủ độ bức xạ nhiệt từ ngọn lửa.
- Mặt khác, khí hydro có tốc độ ngọn lửa rất nhanh, phạm vi dễ bắt cháy rộng trong không khí (4 - 75% so với khí đốt tự nhiên 5 - 75%) và thấp: năng lượng đốt cháy (thấp hơn 100 lần so với xăng), có nghĩa là khí hydro sẽ giúp ổn định ngọn lửa và cung cấp nhiều nhiệt hơn gần đầu vòi đốt hơn và do đó sấy khô và khử tính bay hơi RDF nhanh hơn.
- Khí hydro được đốt cháy trong không khí tạo ra nhiệt độ ngọn lửa rất cao có thể sinh ra lượng phát thải NOx cao. Do đó, một lần nữa, việc sử dụng khí hydro cùng với AF có thể hưởng lợi vì độ ẩm từ AF làm giảm nhiệt độ cao nhất của ngọn lửa và giữ cho lượng phát thải NOx trong tầm kiểm soát.
- Khí hydro có khuynh hướng rò rỉ, vì nó là phân tử nhỏ nhất. Do đó, cần chú ý nhiều hơn tới các phần đấu nối như các mối nối bằng mặt bích và các mối nối có ren cũng như đánh giá khu vực nguy hiểm xung quanh các bộ truyền động van. Vòi đốt có thể ảnh hưởng tới việc lựa chọn thiết bị đo lường trong khu vực này.
- Từ góc độ an toàn, cần cân nhắc xem xét đến việc xử lý nhiên liệu, thiết kế vòi đốt và hệ thống quản lý vòi đốt (kiểm tra độ an toàn) vì mức độ nghiêm trọng của vụ nổ đối với hydro gấp 10 lần so với khí metan. Do đó, sự an toàn trọn vẹn của các hệ thống an toàn hydro cần phải gấp 10 lần hoặc cao hơn so với khí đốt tự nhiên và các hệ thống nhiên liệu hóa thạch khác.
KHD: Chúng tôi đặc biệt khuyến cáo sử dụng khí hydro làm chất trợ đốt nhiên liệu để gia tăng mức thay thế AF. Với tốc độ ngọn lửa cao, phạm vi dễ bắt cháy rộng, và điểm đánh lửa thấp, các đặc tính đốt cháy của hydro bù khuyết lý tưởng cho sự biến động và khả năng cháy thấp hơn của AF.
Về thiết kế vòi đốt, cần lựa chọn loại thép phù hợp để đảm bảo độ kín và tránh bị giòn. Các biện pháp an toàn khác nữa cũng cần phải được xem xét cân nhắc và lắp đặt ở thiết bị phụ trợ để đáp ứng các tiêu chuẩn và các quy định về sử dụng khí hydro.
Unitherm Cemcon: Để giảm thiểu dấu chân carbon một cách bền vững, hãy xem hydro xanh như là một giải pháp lựa chọn nhiên liệu. Bản chất không carbon của nó khiến nó trở nên hấp dẫn, nhưng những thách thức về sự lan truyền ngọn lửa và vận tốc đầu ra của vòi phun rất cao đòi hỏi phải chú ý. Vòi đốt động học của Unitherm với công nghệ M.A.S vượt trội ở đây. Các cân nhắc quan trọng về thiết kế vòi đốt bao gồm khả năng tương thích vật liệu, độ ổn định ngọn lửa và quản lý nhiệt. Sử dụng các vật liệu như thép không gỉ hoặc hợp kim nickel đảm bảo độ bền. Các đặc tính ngọn lửa ổn định là quan trọng để ngăn ngừa ngọn lửa hồi ngược lại, đặc biệt là tốc độ đốt cháy nhanh của khí hydro. Quản lý nhiệt hiệu quả đảm bảo sự phân bố nhiệt độ trong lò nung ở nơi cần thiết. Giải quyết những cân nhắc này khiến các nhà máy xi măng có thể khai thác hiệu quả khí hydro xanh, đảm bảo đốt cháy an toàn và hiệu quả cùng với các AF thấp/không carbon khác.
FCT Combustion: Nhiên liệu khác nhau có nghĩa là cỡ hạt, tỷ trọng, độ ẩm và nhiệt trị khác nhau cùng với thời gian sấy, đánh lửa và đốt cháy cũng như động lực học quá trình đốt cháy khác nhau. Loại nhiên liệu thay thế (AF), sự thay đổi về chủng loại và tỷ lệ được đưa tới vòi đốt có thể ảnh hưởng tới biến dạng độ dài và dòng nhiệt bên trong lò cũng như lượng khí phát thải. Hầu hết các hệ thống định lượng nhiên liệu đều hoạt động theo nguyên lý khối lượng, nghĩa là nhiệt năng được cấp tới vòi đốt có thể thay đổi qua thời gian, ngay cả khi việc định lượng theo khối lượng ổn định, do các đặc tính nhiên liệu thay đổi.
Để giảm thiểu toàn bộ những ảnh hưởng này, vòi đốt phải được thiết kế sao cho có thể vận hành thật linh hoạt để kiểm soát hiệu quả khí động học và quá trình đốt, tăng cường đưa gió hai vào ngọn lửa. FCT khuyến nghị sử dụng Vòi đốt Turbu-Flex™ của chúng tôi với thiết kế đầu khí hướng trục độc đáo, độ chảy rối được cấu hình lại, khí nâng AF được chia ra để nâng liệu từ đáy đường ống vận chuyển lên và khuếch tán nhiên liệu vào trong gió một và gió hai khi rời khỏi đầu vòi đốt.
Ngoài những thách thức tại vòi đốt lò, điều quan trọng cần phải đề cập đến đó là một số nhiên liệu vốn dĩ đã phù hợp hơn với calciner và sẽ không vấn đề gì nếu khắc phục được những khó khăn khi sử dụng chúng tại lò nung, khi đó sẽ dễ dàng sử dụng chúng tại calciner hơn rất nhiều. Những nhiên liệu như vậy bao gồm những nhiên liệu có độ ẩm cao hơn, nhiệt trị thấp hơn, cỡ hạt lớn hơn, thời gian đốt cháy cần thiết lâu hơn, hoặc hàm lượng chất bốc thấp, cùng với những đặc tính khác nữa.
Theo nguyên tắc chung, mục tiêu là phải đạt được việc dễ dàng đốt cháy AF ở vòi đốt lò, và khó đốt nhiên liệu hơn ở calciner. Trong trường hợp không có sẵn calciner, sự kết hợp giữa khó và dễ đốt AF hơn sẽ là giải pháp hứa hẹn tốt nhất để gia tăng tỷ lệ thay thế tổng thể, ít tác động hơn tới quá trình vận hành lò. Các giải pháp khác cũng có thể là sử dụng các vòi đốt kiểu hành tinh hoặc mô hình CFD.
Sử dụng khí hydro làm nhiên liệu trong sản xuất xi măng cũng là một xu hướng mới nổi có thể tác động tới hiệu suất vòi đốt. Do chi phí cao và tính sẵn có thấp hiện tại, khí hydro có thể được xem xét là một AF trong ngắn hạn và trung hạn. Việc sản xuất hydro thông qua điện phân cũng tạo ra khí oxi, do đó, sự sẵn có của một hoặc cả hai loại khí này cho các hệ thống vòi đốt sẽ mở ra những khả năng mới để kiểm soát các đặc tính ngọn lửa được tối ưu hóa cho sản xuất xi măng.
KHD: Có hai khía cạnh phải xem xét ở đây: bản thân AF và sau đó là thiết kế vòi đốt.
Các nhà máy xi măng trước hết cần cân nhắc, xem xét việc tối ưu hóa chuỗi cung ứng AF của họ để giảm thiểu sự biến động của nhiên liệu. Việc lựa chọn được nhà cung cấp nhiên liệu ở đây là quan trọng. Hãy lựa chọn các nhà cung cấp có uy tín và đáng tin cậy để cung cấp AF chất lượng ổn định và có mục tiêu thiết lập mối quan hệ đối tác lâu dài để đảm bảo nguồn cung cấp nhiên liệu ổn định và đáng tin cậy. Các nhà máy cũng nên xem xét việc phối trộn các AF khác nhau để đạt được thành phần nhiên liệu ổn định hơn.
Khi nói đến thiết kế vòi đốt, công nghệ vòi đốt đa nhiên liệu hiện đại đã cho phép các nhà máy xi măng tối ưu hóa được quá trình đốt khi sử dụng AF. Các vòi đốt này được thiết kế dành riêng cho điều chỉnh và tương tác với chất lượng AF thực tế với những đặc điểm sau:
- Gió sơ cấp (gió một): Vòi đốt phải được thiết kế với lượng gió sơ cấp dự trữ cho phép tăng cường quá trình đốt cháy và gia tăng động lượng của vòi đốt.
- Các đặc tính nhiên liệu AF: Miệng vòi đốt phải được thiết kế với khả năng cung cấp khí phân phối nhằm phân phối các hạt nhiên liệu trong ngọn lửa để đánh lửa nhanh và đốt cháy hết hoàn toàn.
- Nhiên liệu thay thế: Hỗn hợp nhiên liệu toàn phần được đốt cháy tại vòi đốt phải đồng nhất và ổn định. Do đó, khi AF chất lượng thấp được sử dụng cần phải được cân bằng bằng AF chất lượng cao hơn. Mạch vòng điều chỉnh này có thể thực hiện được bằng bộ tối ưu hóa theo thời gian thực (Real Time Optimiser) của KHD, là một phần của bộ kỹ thuật số ProMax KHD.
KHD cung cấp vòi đốt chính PYROJET và vòi đốt kiểu hành tinh PYROSAT để đốt cháy tin cậy AF trong lò quay.
ROCKTEQ: Tại ROCKTEQ, chúng tôi dự đoán những thay đổi về chủng loại và chất lượng của AF trong những năm tới. Có một sự chuyển đổi đáng chú ý hướng tới việc gia tăng sử dụng các nhiên liệu trung hòa CO2, như các nhiên liệu sinh học có nguồn gốc từ các nguồn như vỏ trấu, rơm rạ, dư lượng cây hướng dương, dư lượng lõi ngô nghiền mịn, và nhiên liệu gốc rác thải có chưa thành phần hữu cơ, như nhiên liệu rắn thu hồi (SRF) (chủ yếu là nhựa, giấy, sợi vải…), có sẵn dồi dào ở những vùng nhất định. Các nhiên liệu sinh học thuần khiết thường có nhiệt trị thấp (LCV) thấp hơn so với SRF và có thể có hàm lượng độ ẩm không ổn định phụ thuộc vào các điều kiện thời tiết. Ngoài ra, AF giàu LCV được khuyến khích sử dụng, nếu có thể tiếp cận được, để ổn định các biến động bằng cách điều chỉnh nhiệt trị trung bình hỗn hợp của AF.
Với mức thay thế nhiệt (TSR) ngày càng tăng, điều quan trọng là phải giám sát liên tục các AF này. Các thiết bị lấy mẫu tự động có thể được sử dụng để đảm bảo vận hành lò ổn định hoặc, ít nhất, có thể chủ động kiểm soát được quá trình nung luyện clinker phù hợp với chất lượng nhiên liệu thay đổi.
Để xử lý sự biến động nhiệt trị của AF hoặc tận dụng các nhiên liệu có nhiệt trị thấp, ROCKTEQ đã phát triển một hệ thống được gọi là AF-Booster®. Hệ thống này sử dụng nhiệt thừa để sấy nhiên liệu sinh học và phân loại chúng trước khi đưa vào quá trình gia nhiệt tại điểm phun phù hợp nhất, đó là ở vòi đốt chính hoặc (các) vòi đốt kiểu hành tinh. Một lợi điểm nữa là giảm được độ ẩm nhiên liệu và lượng khí trong lò, tối ưu hóa hiệu suất lò và quạt ID.
Unitherm Cemcon: Để đảm bảo vận hành vòi đốt tin cậy với AF, các chương trình sau nên được xem xét cân nhắc:
- Kiểm soát chất lượng: Thực hiện các biện pháp nghiêm ngặt để kiểm soát cỡ hạt, hàm lượng độ ẩm và các yếu tố khác quan trọng để đảm bảo sự ổn định của nhiên liệu.
- Tiêu chuẩn hóa: Phát triển các quy trình xử lý và phối trộn nhiên liệu để đảm bảo chất lượng ổn định giữa các nhà cung cấp và các lô hàng.
- Công nghệ vòi đốt thích hợp: Đầu tư vào các vòi đốt có thể điều chỉnh được các thông số đốt theo thời gian thực, như các sản phẩm của Unitherm được trang bị Công nghệ M.A.S, tối ưu hóa năng suất đối với các nhiên liệu có chất lượng thay đổi.
- Đào tạo: Đào tạo người vận hành về xử lý AF một cách hiệu quả. Thực hiện các biện pháp này để giảm thiểu sự biến động, đảm bảo vận hành vòi đốt tin cậy và hiệu quả với AF.
Một số nhà máy xi măng đang xem xét việc sử dụng nhiên liệu khí hydro. Cần phải cân nhắc những gì về thiết kế vòi đốt khi sử dụng khí hydro?
FCT Combustion: Có một số điều cân nhắc, bao gồm:
- Ở vòi đốt chính, sự truyền nhiệt bức xạ chiếm ưu thế và khí hydro tạo ra rất ít sự truyền nhiệt bức xạ so với: nhiên liệu rắn hoặc các nhiên liệu ra muội carbon (như HFO và ở một mức độ nào đó là khí tự nhiên). Do đó, việc sử dụng khí hydro cùng với AF như RDF hoặc sinh chất, dầu sinh học và tương tự, là cần thiết để duy trì đủ độ bức xạ nhiệt từ ngọn lửa.
- Mặt khác, khí hydro có tốc độ ngọn lửa rất nhanh, phạm vi dễ bắt cháy rộng trong không khí (4 - 75% so với khí đốt tự nhiên 5 - 75%) và thấp: năng lượng đốt cháy (thấp hơn 100 lần so với xăng), có nghĩa là khí hydro sẽ giúp ổn định ngọn lửa và cung cấp nhiều nhiệt hơn gần đầu vòi đốt hơn và do đó sấy khô và khử tính bay hơi RDF nhanh hơn.
- Khí hydro được đốt cháy trong không khí tạo ra nhiệt độ ngọn lửa rất cao có thể sinh ra lượng phát thải NOx cao. Do đó, một lần nữa, việc sử dụng khí hydro cùng với AF có thể hưởng lợi vì độ ẩm từ AF làm giảm nhiệt độ cao nhất của ngọn lửa và giữ cho lượng phát thải NOx trong tầm kiểm soát.
- Khí hydro có khuynh hướng rò rỉ, vì nó là phân tử nhỏ nhất. Do đó, cần chú ý nhiều hơn tới các phần đấu nối như các mối nối bằng mặt bích và các mối nối có ren cũng như đánh giá khu vực nguy hiểm xung quanh các bộ truyền động van. Vòi đốt có thể ảnh hưởng tới việc lựa chọn thiết bị đo lường trong khu vực này.
- Từ góc độ an toàn, cần cân nhắc xem xét đến việc xử lý nhiên liệu, thiết kế vòi đốt và hệ thống quản lý vòi đốt (kiểm tra độ an toàn) vì mức độ nghiêm trọng của vụ nổ đối với hydro gấp 10 lần so với khí metan. Do đó, sự an toàn trọn vẹn của các hệ thống an toàn hydro cần phải gấp 10 lần hoặc cao hơn so với khí đốt tự nhiên và các hệ thống nhiên liệu hóa thạch khác.
KHD: Chúng tôi đặc biệt khuyến cáo sử dụng khí hydro làm chất trợ đốt nhiên liệu để gia tăng mức thay thế AF. Với tốc độ ngọn lửa cao, phạm vi dễ bắt cháy rộng, và điểm đánh lửa thấp, các đặc tính đốt cháy của hydro bù khuyết lý tưởng cho sự biến động và khả năng cháy thấp hơn của AF.
Về thiết kế vòi đốt, cần lựa chọn loại thép phù hợp để đảm bảo độ kín và tránh bị giòn. Các biện pháp an toàn khác nữa cũng cần phải được xem xét cân nhắc và lắp đặt ở thiết bị phụ trợ để đáp ứng các tiêu chuẩn và các quy định về sử dụng khí hydro.
Unitherm Cemcon: Để giảm thiểu dấu chân carbon một cách bền vững, hãy xem hydro xanh như là một giải pháp lựa chọn nhiên liệu. Bản chất không carbon của nó khiến nó trở nên hấp dẫn, nhưng những thách thức về sự lan truyền ngọn lửa và vận tốc đầu ra của vòi phun rất cao đòi hỏi phải chú ý. Vòi đốt động học của Unitherm với công nghệ M.A.S vượt trội ở đây. Các cân nhắc quan trọng về thiết kế vòi đốt bao gồm khả năng tương thích vật liệu, độ ổn định ngọn lửa và quản lý nhiệt. Sử dụng các vật liệu như thép không gỉ hoặc hợp kim nickel đảm bảo độ bền. Các đặc tính ngọn lửa ổn định là quan trọng để ngăn ngừa ngọn lửa hồi ngược lại, đặc biệt là tốc độ đốt cháy nhanh của khí hydro. Quản lý nhiệt hiệu quả đảm bảo sự phân bố nhiệt độ trong lò nung ở nơi cần thiết. Giải quyết những cân nhắc này khiến các nhà máy xi măng có thể khai thác hiệu quả khí hydro xanh, đảm bảo đốt cháy an toàn và hiệu quả cùng với các AF thấp/không carbon khác.

Vòi đốt lò MAS của Unitherm Cemcon với vòi đốt kiểu hành tinh tích hợp.
Vòi đốt kiểu hành tinh có vai trò gì trong sản xuất xi măng hiện đại không?
FCT Combustion: Nếu như nhà sản xuất xi măng mong muốn tăng mức sử dụng AF lên với các mức rất cao, thì lộ trình lý tưởng đó là sử dụng vòi đốt tùy chỉnh được thiết kế dành riêng cho (các) loại nhiên liệu của họ. Tuy nhiên, nếu điều này là không thể, thì việc sử dụng vòi đốt kiểu hành tinh là giải pháp hữu hiệu để đưa nhiều AF hơn vào quá trình.
Vòi đốt kiểu hành tinh là một chi tiết thiết bị phun AF trực tiếp vào gió hai nóng, thấp hơn vòi đốt và cao hơn một chút trong lò. Nó phun thêm gió sơ cấp để làm mát và đặc biệt là một vài dòng chảy rối và trộn lẫn các hạt AF với gió hai (gió thứ cấp). Trong thời gian di chuyển của RDF từ chỗ phun vào của vòi đốt kiểu hành tinh đến ngọn lửa chính, có hiệu ứng sấy khô, gia nhiệt sơ bộ và khử độ bay hơi, nâng cao khả năng đốt cháy AF khi đi tới ngọn lửa chính.
Vòi đốt kiểu hành tinh là một lựa chọn đầu vào hoặc bổ sung tốt để phun AF vào lò vì:
- Nó dễ dàng thực hiện và rẻ tiền.
- Nó cho phép sử dụng AF kém chất lượng nhất (hạt thô hơn, các hạt 3D, độ ẩm cao hơn) trong lò vì nó có chế độ sấy và gia nhiệt sơ bộ trước khi đốt cháy.
- Nó phun AF vào môi trường cao O₂.
Tuy nhiên, vòi đốt kiểu hành tinh có những hạn chế của nó liên quan tới TSR, khoảng 40 - 60% tùy thuộc vào điều kiện trong lò, vì:
- Trên ngưỡng đó, sẽ không tốt cho quá trình nung luyện clinker và chất lượng clinker nếu đưa nhiên liệu vượt ra khỏi tâm lò.
- Khả năng kiểm soát và phối trộn các hạt AF bị hạn chế phần nào.
- Vòi đốt kiểu hành tinh không có đầy đủ khả năng của một vòi đốt AF cao hiện đại, do đó, sẽ gặp nhiều khó khăn hơn trong việc xử lý những lượng nhiên liệu lớn hơn.
KHD: Đúng vậy, vòi đốt kiểu hành tinh sẽ tiếp tục đóng vai trò quan trọng trong sản xuất xi măng hiện đại, đặc biệt là ở các cơ sở nhà máy cũ (brownfield) để nâng cấp cải tạo và trang bị thêm cho các hệ thống đốt lò quay hiện có để tăng mức sử dụng AF. Hơn nữa, vòi đốt kiểu hành tinh mang lại cơ hội cho lắp đặt hai hệ thống đốt AF độc lập trong lò quay và do đó sử dụng hai dòng nhiên liệu riêng, một đưa vào qua vòi đốt chính và một đưa vào qua vòi đốt kiểu hành tinh. Điều này có thể giúp nâng cao độ ổn định và tính nhất quán của quá trình đốt và mang lại độ linh hoạt cao nhất của hỗn hợp AF.
ROCKTEQ: Tại ROCKTEQ, chúng tôi tin tưởng chắc chắn vào hiệu suất của vòi đốt kiểu hành tinh. Các nghiên cứu trước đây và kinh nghiệm thực tế đã chứng minh rằng vòi đốt kiểu hành tinh có thể tăng TSR của AF và giúp cho lò vận hành ổn định hơn so với các phương pháp khác. Các phát triển về mặt kỹ thuật đối với vòi đốt lò liên quan tới AF đã diễn ra trong gần 25 năm qua. Ban đầu, các loại thiết kế khác nhau đã được thử nghiệm trong quá trình vận hành sử dụng AF dạng rắn.
Các thiết kế này liên quan đến việc lắp đặt một đường ống bên trên vòi đốt lò, sau đó được đúc cùng với vật liệu chịu lửa của vòi đốt. Sau này, đường ống dẫn AF đã được tích hợp vào vòi đốt lò, đôi khi với 2 - 3 đường ống dẫn AF được bố trí ở giữa. Các vòi đốt lò đa nhiên liệu này đã được thiết kế để đáp ứng các loại AF khác nhau. Tuy nhiên, đã gặp phải những khó khăn ở hai khu vực chính:
- Tính năng đánh lửa và đốt cháy các loại AF khác nhau đã thay đổi, dẫn đến việc tạo ra ngọn lửa dài và khó kiểm soát.
- Đường kính của vòi đốt lò đã giảm đáng kể để đáp ứng một số thiết kế quan trọng, gây ảnh hưởng tiêu cực đến quá trình đốt kể cả khi đốt than tiêu chuẩn.
Vòi đốt kiểu hành tinh mang lại lợi thế kiểm soát độc lập từ vòi đốt chính, giúp người vận hành linh hoạt hơn trong việc kiểm soát quá trình nung luyện clinker. Tại ROCKTEQ, chúng tôi đã tăng cường thêm hiệu suất vòi đốt kiểu hành tinh bằng cách thực hiện các hệ thống treo độc lập, cho phép điều chỉnh tối đa sự hình thành và vị trí ngọn lửa.
Unitherm Cemcon: Các vòi đốt kiểu hành tinh là quan trọng trong quá trình sản xuất xi măng hiện đại để tối ưu hóa việc sử dụng các nhiên liệu thứ cấp dạng sinh học, giảm bớt tác động môi trường, đặc biệt ở mức TSR cao (khoảng từ 70 - 100%). Đây là lý do tại sao:
- Kiểm soát nhiệt độ: Các vòi đốt kiểu hành tinh được bố trí hợp lý cung cấp nhiệt đầu vào tập trung cho kiểm soát nhiệt độ chính xác và phân bố nhiệt đồng đều, gia tăng khả năng tạo thành clinker xi măng và chất lượng sản phẩm.
- Tính linh hoạt của nhiên liệu: Chúng cho có phép sử dụng các loại AF khác nhau, giảm bớt sự phụ thuộc vào nhiên liệu hóa thạch, giảm bớt lượng khí phát thải và nâng cao tính bền vững.
- Giảm thiểu lượng khí phát thải: Các vòi đốt kiểu hành tinh thúc đẩy quá trình đốt cháy hiệu quả và sử dụng nhiên liệu sạch hơn, giảm thiểu khí hiệu ứng nhà kính (GHG) và các chất gây ô nhiễm, đáp ứng các quy định về môi trường.
- Tiết kiệm chi phí: Nhờ gia tăng TSR, giảm bớt tiêu hao nhiên liệu hóa thạch, và giảm thiểu lượng khí phát thải CO₂, chúng mang lại những khoản tiết kiệm chi phí dài hạn và nâng cao hiệu suất vận hành.
Việc tích hợp vòi đốt kiểu hành tinh vào các hệ thống lò xi măng làm gia tăng khả năng cạnh tranh và thúc đẩy sự phát triển bền vững trong ngành.
Có thể tối ưu hóa thiết kế vòi đốt ra sao để giảm thiểu lượng khí phát thải có hại như NOx?
FCT Combustion: Người ta thường tin rằng việc giảm thiểu lượng gió sơ cấp là một cách để giảm bớt việc hình thành NOx tại vòi đốt. Tuy nhiên, trong thực tế, câu trả lời lại không hề đơn giản. Một mặt, việc giảm lượng gió sơ cấp có thể dẫn đến sự gia tăng NOx nếu nó khiến nhiên liệu đánh lửa chậm, chẳng hạn. Ngoài ra, việc chỉ giảm mỗi lượng gió sơ cấp thôi cũng có thể ảnh hưởng tới chất lượng clinker, làm giảm cường độ xi măng và có thể gây ra các vấn đề liên quan tới quá trình vận hành lò như độ thích ứng chậm hơn, các chu trình kiềm và lưu huỳnh tăng lên trong lò và quá trình đốt không kiểm soát được.
Điều quan trọng đó là lượng khí phát thải NOx có thể giảm thiểu được bằng cách giảm lượng gió sơ cấp, miễn là nó có khả năng kiểm soát được quá trình đốt cháy tương tự hoặc tốt hơn. Ngoài lượng gió sơ cấp, khả năng phân phối trong ngọn lửa có thể có tác động đáng kể tới lượng khí phát thải NOx. Việc cuốn gió hai vào bị trễ có thể giảm bớt NOx, miễn là nó không làm cho nhiên liệu đánh lửa chậm. Việc bắt lửa sớm của ngọn lửa từ lâu đã được biết đến là sẽ giảm bớt NOx và thiết kế đầu vòi đốt và gió sơ cấp là rất quan trọng đối với điểm đánh lửa. Vị trí và động lượng của gió sơ cấp tại đầu vòi đốt là rất quan trọng về cách thức và vị trí gió hai được cuốn vào ngọn lửa. Nó sẽ cho phép đánh lửa nhiên liệu nhanh nhưng quá trình đốt cháy nói chung lại chậm hơn - một sự cân bằng rất tốt. Việc phun nước vào ngọn lửa từ đầu vòi đốt cũng có thể hữu ích trong việc kiểm soát nhiệt độ đỉnh là một yếu tố khác trong việc tạo ra NOx, nhưng cũng có những bất lợi.
Dù gì, một giải pháp cực kỳ hiệu quả và có lợi thế về mặt kinh tế để giảm thiểu lượng phát thải khí NOx chính là sử dụng AF. Các đặc tính của chúng như độ ẩm cao hơn, cỡ hạt lớn hơn, hoặc nhiệt trị thấp, cùng với các yếu tố khác làm chậm lại quá trình đốt cháy. Các nhiên liệu có hàm lượng khí ni-tơ thấp hơn cũng có thể sử dụng được để giảm thiểu lượng NOx, mặc dù kết quả có hạn. Một vòi đốt linh hoạt có thể điều chỉnh được theo các điều kiện và các loại nhiên liệu khác nhau là điều quan trọng nhất.
Công nghệ vòi đốt thực tế có thể trong một vài trường hợp có tác động lớn tới lượng khí phát thải NOx, chẳng hạn, vòi đốt Gyro-Therm™ cho khí đốt tự nhiên sử dụng công nghệ mới hoàn toàn để phối trộn nhiên liệu và khí giảm thiểu việc tạo thành NOx, đồng thời tạo ra một biên dạng dòng nhiệt nóng, ngắn lý tưởng cho vận hành lò xi măng.
Tuy nhiên, nhìn chung sẽ không mong muốn giảm bớt chất lượng sản phẩm, năng suất lò, mức tiêu hao nhiên liệu, tuổi thọ vật liệu chịu lửa…, để kiểm soát lượng khí phát thải NOx. Tốt hơn là phải xử lý khí thải để loại bỏ NOx ra khỏi dòng khí thải.
KHD: Việc tối ưu hóa thiết kế vòi đốt để giảm thiểu lượng khí phát thải NOx phụ thuộc rất nhiều vào lượng gió sơ cấp sử dụng, hình dạng vòi phun và vị trí. Các thông số này ảnh hưởng tới nhiệt độ ngọn lửa, mà trực tiếp ảnh hưởng tới quá trình hình thành NOx: nhiệt độ ngọn lửa (trong khi vẫn đảm bảo được các yêu cầu công nghệ) càng thấp và càng ổn định, mức độ phát thải khí NOx càng thấp. Vòi đốt PYROJET của chúng tôi sử dụng gió sơ cấp áp lực cao, giúp giảm được tối đa lượng gió sơ cấp tiêu hao, trong khi vẫn đạt được hiệu suất đốt cháy cao, nhờ vậy giảm được tối đa lượng khí phát thải NOx.
ROCKTEQ: Vòi đốt chính thường sử dụng 8 - 12% khí đốt cần thiết cho đốt cháy nhiên liệu trong lò để điều chỉnh lượng khí phát thải. Dòng và nhiệt độ gió thứ cấp giàu oxi cũng ảnh hưởng tới lượng khí phát thải của vòi đốt chính. Để giảm thiểu lượng khí phát thải NOx dạng nhiệt (được tạo ra ở nhiệt độ trên 1.250°C với tốc độ phát triển theo cấp số nhân), thiết kế vòi đốt lò phải kết hợp quá trình đốt nhiều bậc hoặc sử dụng nhiên liệu có độ ẩm làm chậm lại quá trình đánh lửa và ngăn ngừa ngọn lửa đạt tới nhiệt độ đỉnh. Thiết kế đốt nhiều bậc phụ thuộc vào việc làm chậm lại tốc độ phản ứng của nhiên liệu oxi. Khí phát thải NOx tạo ra từ các phản ứng của N₂ như là một thành phần khí với O₂ từ khí đốt, tăng cường khi nhiệt độ đốt cháy cao.
Việc giảm lượng khí oxi cung cấp vào tâm ngọn lửa làm chậm lại độ hoạt tính carbon, dẫn đến nhiệt độ đỉnh của ngọn lửa thấp hơn và tiếp theo là lượng khí phát thải NOx dạng nhiệt thấp hơn. Tuy nhiên, việc đạt được sự cân bằng này có thể là thách thức khi gió sơ cấp và gió vận chuyển được yêu cầu cho AF rắn ở tâm vòi đốt. Các thử nghiệm được tiến hành trong thập kỷ trước đã cho thấy rằng việc sử dụng khí thải của quá trình đốt cháy thay thế cho gió sơ cấp, mang lại những kết quả tích cực, giảm đáng kể lượng khí phát thải NOx. Đáng tiếc là, cặn lắng trong khí thải ngưng tụ và tích tụ đã đặt ra những thách thức qua việc gây tắc nghẽn và làm hư hỏng các bộ phận bên trong vòi đốt lò. Nghiên cứu việc sử dụng khí thải làm khí vận chuyển cho AF có khả năng phải thực hiện thêm.
Tại ROCKTEQ, việc kiểm soát độc lập các dòng gió sơ cấp khác nhau qua các van điều chỉnh lưu lượng là bắt buộc đối với thiết kế vòi đốt chính, đảm bảo có thể đạt được các mức điều chỉnh cần thiết.
Unitherm Cemcon: Thiết kế vòi đốt là mấu chốt để giảm thiểu lượng khí phát thải của nhiên liệu trong quá trình sản xuất xi măng, với việc Unitherm Cemcon cung cấp các giải pháp tiên tiến trong gần 80 năm qua. Dưới đây là cách mà thiết kế vòi đốt có thể giúp ích:
- Đốt cháy hiệu quả: Thiết kế phù hợp đảm bảo phối trộn đều nhiên liệu - khí cho đốt cháy hoàn toàn, giảm thiểu lượng khí phát thải nguy hại như CO và UHC.
- Công nghệ thấp NOx: Thiết kế của Unitherm Cemcon tích hợp công nghệ thấp NOx, như đốt nhiều bậc và FGR, giảm đáng kể lượng khí phát thải NOx.
- Kiểm soát chính xác: Các hệ thống kiểm soát tiên tiến cho phép quản lý chính xác các thông số đốt, tối ưu hóa các điều kiện để giảm thiểu lượng khí phát thải.
- AF: Thiết kế vòi đốt đáp ứng việc sử dụng AF, với các đặc tính như vòi đốt kiểu hành tinh PNEUMO-DEFLECTOR® hoặc UNISAT để đốt hiệu quả và giảm bớt lượng khí phát thải, kể cả với hàm lượng độ ẩm cao.