
Schenck Process Group
Alternative Fuels feeding concepts for the Cement industry
Flexible solutions for RDF plants according to customers requirements

by Karsten Grünewald 24th of April 2015

FCW2015 VIETNAM 24" Technical Symposium & Exhibition

WHERE are normally the locations of alternative fuel feeding systems in a cement plant?

FCW2015 VIETNAM 24" Technical Symposium & Exhibition

waste collection material preparation reception

storage

pneumatic & mechanical conveying

weighing & feeding

WHAT are the process steps to be

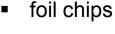
covered in use of alternative fuels?

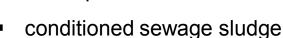
FCM2015 VIETNAM 24° Technical Symposium & Exhibition

HOW to design alternative fuels systems?

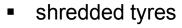
Three golden rules:

- Apply robust equipment despite the low bulk density!
 - → ensures high availability.
- Avoid bottlenecks secondary fuels tend to bridging!
 - → avoids down times caused by blockages.
- Allow for varying bulk density and flowability!
 - → ensures high flexibility in fuel usages.




Material

Use of alternative fuels in cement production: Multiple fuel types



- rice husk
- animal meal
- mixtures of the above

Alternative fuels have a high calorific value that can even exceed the heat value of hard coal (20 MJ/kg):

foil chips:

grain size : 1-50 mm heat value : 22 MJ/kg bulk density: 0.08 t/m³

BPG (solid fuel out of industrial waste):

grain size : 1-30 mm heat value : 22 MJ/kg bulk density: 0.2 t/m³

Waste is as long waste until somebody touches it.

FCW2015 VIETNAM 24" Technical Symposium & Exhibition

Step

Model

Material

It's all about material: ... suggestion for a 2 step approach during feasibility study

FOCUS: AF HANDLING AND FEEDING

STEP 1 Characterize the AF sources for the present/future as best as possible

Invest time! Tests ... → size distribution and chemical composition not enough, <u>also</u> compressibility, time behavior...

→ extrapolate to possible variances (critical aspect)

STEP 2 Accept and consider that each technical (or technological) machine/concept has an "optimal" area of application and certain limitations

→ perform material processing/conveying tests, document and discuss limitations

Why:

Realistic pretreatment and handling concepts are mandatory

Reliability evaluation

Wear & tear,
OPEX- budgets

FC W2015 VIETNAM 24" Technical Symposium & Exhibition

Material

It's all about material: ... suggestion for a 2 step approach during feasibility study

FOCUS: AF HANDLING AND FEEDING

Install equipment only after given careful thought about the feeding material, otherwise it will lead to difficulties ...,

but it happens quite often.

Material

Use of alternative fuels in cement production: multiple fuel types

non-ATEX design	Rice straw	RDF	Sewage sludge	Animal meal	
GENERAL MATERIAL PROPERTIES FOR	THE COMPLETE INST	ALLATION (INCL. SH	REDDER)		
moisture	max. 10 %	max. 20 %	max. 10 %	max. 10 %	
fines < 500 μm	max. 3 %	max. 3 %	max. 3 %	max. 3 %	
fat content	I			max. 14 %	
temperature	ambient				
flow properties	slightly sluggish, tending to bridging				
ash content	max. 15%				
foreign bodies (incl. inert materials)	max. 3 %, max. 50 mm, three- and two-dimensional				
ferrous / non-ferrous metal	max. 0,5%, max. 40 mm, two- and one-dimensional				
MATERIAL PROPERTIES FOR FEEDING	DOSING SYSTEM				
bulk density min - max	0,03 - 0,07 t/m³	0,1 - 0,2 t/m³	0,5 - 0,7 t/m³	0,5 - 0,7 t/m³	
grain size	0 - 30 mm, 1 - 3 % max. 50 mm	0 - 30 mm, 1 - 3 % max. 50 mm	0 - 5 mm	0 - 5 mm	
grain shape	two-dimensional / granular				
DOSING SYSTEM					
feedrate gravimetric max.	0.0 t/h	0.0 t/h	0.0 t/h	0.0 t/h	
feedrate gravimetric min.	0.0 t/h	0.0 t/h	0.0 t/h	0.0 t/h	
feedrange	1:	1:	1:	1:	
feedrate volumetric max.	0.0 m³/h				
feeding accuracy	+/- 1 % referring to the set feedrate				
ADDITIONAL DATA					
truck discharge feedrate	m³/h, max t/h				
silo / storage volume		m³ at t/m³			
silo extraction volumetric feedrate	m³/h				

Additional ATEX material properties			
rate of pressure rise (K _{st})	max bar*m/s		
max. explosion pressure (p _{max})	bar		
class number (Brennzahl)			
smouldering temperatue	min °C		
self ignition temperature	min °C		

Material reception

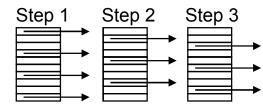
MULTIDOCK – alternative fuels reception High speed and spillage free unloading of trucks

standard trailers can be used volume approx. 90 m³

The discharge is controlled automatically

standard containers can be used volume 30-40 m³

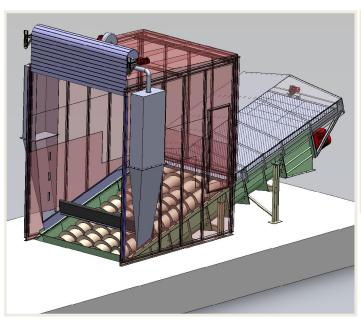
Material reception



Walking floor discharge system installed in trailer

simultaneous feed into docking station

return in staggered sections



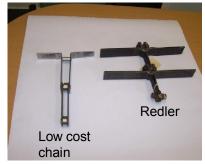
FCN 2015 VIETNAM 24th Technical Symposium & Exhibition

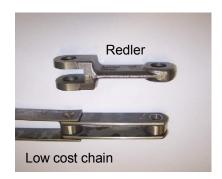
Material reception

MULTIDOCK – alternative fuels reception High speed and spillage free unloading of trucks

- ☑ truck unloading capacity > 500m³/h
- ☑ double sealing, spillage cleaning
- ☑ access to the truck inside of the box

FCN 2015 VIETNAM 24th Technical Symposium & Exhibition


Mechanical material transport


MoveMaster® chain conveyors: High reliability by robust design

The **REDLER** drop forged chain, tensile load up to 70 kN

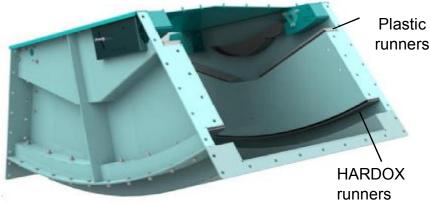
Mechanical material transport

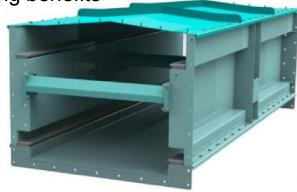
MoveMaster® chain conveyors: High reliability by robust design

swan neck type inclination up to 75°

L type inclination up to 45°

horizontal type inclination up to 10°


FC N2015 VIETNAM 24" Technical Symposium & Exhibition



Mechanical material transport

MoveMaster® chain conveyors: New design result in following benefits

- 1. Weight reduction due to the reinforced shape
- 2. Chain protection against stream of feed material
- 3. Straight shape inside
- 4. Tension end with new trailing wheel design and shaftless design of trailing wheels
- 5. New chain / flight configuration result in weight reduction, but withstand higher forces absorbing different extension of the chain links on both side of the conveyor

FCN2015 VIETNAM 24" Technical Symposium & Exhibition

Mechanical material transport

TEDO tube and U – conveyor: Reliable and spillage free conveying – if necessary around obstacles

"We will either find a way, or make one."

Hannibal

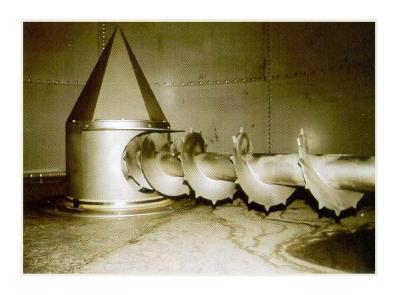
- able to handle long distances and problematic topographic areas
- spillage free transportation of alternative fuels
- inclination up to 30°
- walk way integrated in support structure
- long distance between support piles possible (>24m)

FCN2015 VIETNAM 24" Technical Symposium & Exhibition

Mechanical material transport

TEDO tube and U – conveyor:

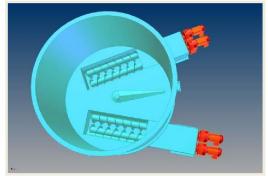
Reliable and spillage free conveying – if necessary around obstacles


Storage Systems

Storage silos with discharge

Aslan Cimento, OYAK Group, Turkey Silos with explosion venting and silo extraction screw

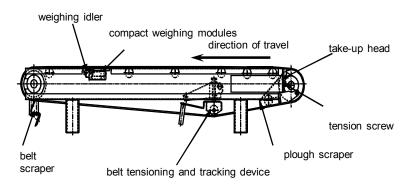
Intermediate storage and distribution



LAFARGE Poland, Malogosz plant

Intermediate and distribution hopper

- huge diameter of double extraction screws, shaftless screws available as option to avoid any wind ups
- huge inlet area ensures continuous filling of feeding screw
- more than 50 installations around the world
- variable speed drive for extraction screws and agitator, controlled by downstream weigh belt feeder MULTIDOS ®
- capacity up to 50 m³ available
- dust tight



FCW2015 VIETNAM 24" Technical Symposium & Exhibition

Weighing systems MULTIDOS® belt weighfeeder

MULTIDOS® belt weighfeeder

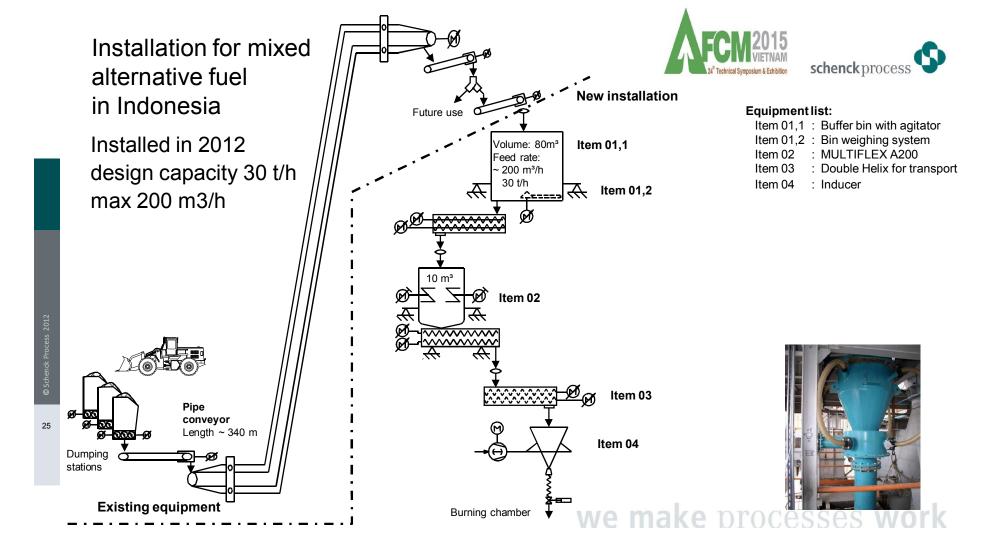
- continuous gravimetric feeding of bulk solids
- accuracy (related to actual value): ± 1%
- rugged design suitable for the harshest demands
- MechaTronic design with integrated electronics
- safe belt run monitoring and tracking
- easy belt change without auxiliaries
- throughput rate: up to 200 m³/hr
- conveying speed: max. 0.5 m/s

Weighing systems Screw weighfeeder MULTIFLEX

- flexible screw weighfeeder in dust-tight, enclosed design
- suitable for all kinds of alternative fuels (explosive and non-explosive)
- designed for materials with bulk density between 0.05 - 0.7 t/m³ and particle size up to 100mm
- designed for hoppers of up to 25m³
- feed rate of 1 to 20 t/hr (up to 400m³/hr)
- high feed constancy, reliability & flexibility
- easy maintenance

Screw weighfeeder MULTIFLEX

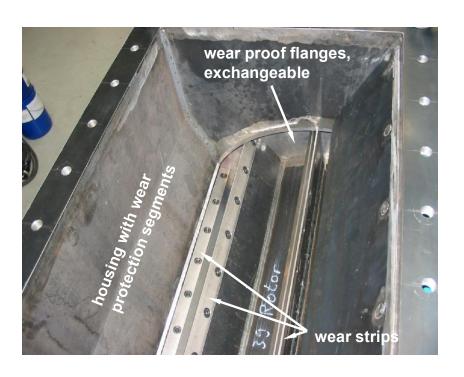
Weighing systems

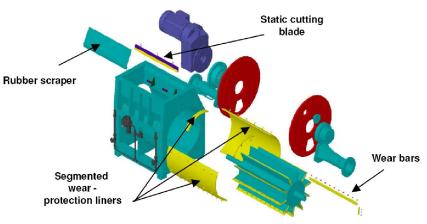


Hopper $25 \, \text{m}^3$ 2 x DN 400 Helix 200 m³/h Cap.:

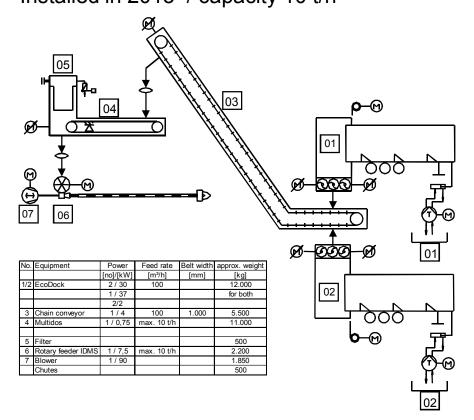
FC VI 2015 2017 Technical Symposium & Exhibition

Pneumatical material transport IDMS blow through rotary valve


IDMS blow through rotary valve


- in-line feeding to pressurised pneumatic conveying systems
- all wear parts exchangeable from the plant site
- robust cutting blade for reliable handling of oversize material
- blow through design for feeding cohesive fuels
- high degree of filling through large inlet section
- feed rate up to 20 t/hr (200 m³/h)

FCN 2015 VIETNAM 24° Technical Symposium & Exhibition


Pneumatical material transport IDMS blow through rotary valve

RDF dosing system in Thailand Installed in 2013 / capacity 10 t/h

we make processes work

THANK YOU VERY MUCH FOR YOUR ATTENTION