

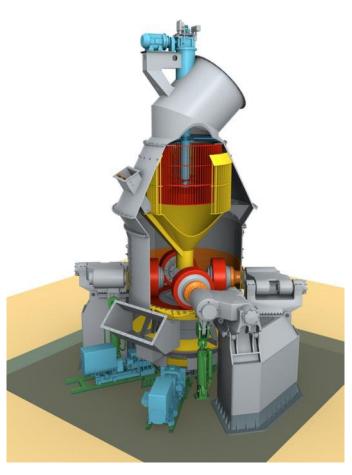
www.ximang.vn - www.cement.vn

AFCM 2015 - Hanoi, Vietnam

Agenda

- MVR mill Design features
- MVR mill MulitDrive®
- MVR references
- Cement Industry Challenges
- Conclusion

Company history

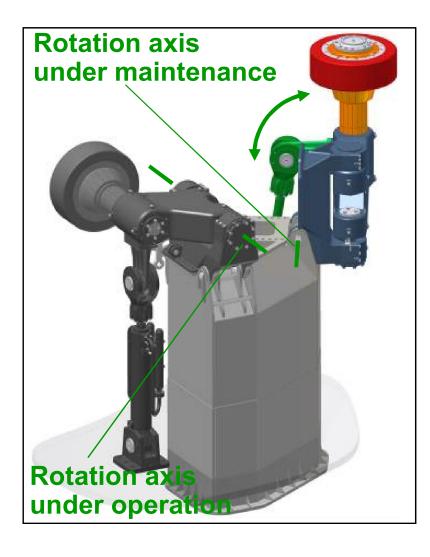

1864	Foundation of the company
1890	1st air separator for the cement industry
1894	1st mill for the cement industry
1925	Largest cement mill in the world
1956	1st MPS mills for raw material and coal grinding
1979	The world's 1st VRM for cement grinding
1994	Launch of MPS B-Series with improved performance
2000	Establishment of Gebr. Pfeiffer (India) PVT. LTD
2005	Establishment of Gebr. Pfeiffer Inc. / USA
2006	1st MVR mill
2007	1st MultiDrive® mill
2011	The world's largest VRM for cement grinding
2014	Already 20 MVR mills sold

Gebr. Pfeiffer SE is a 100% family-owned group of companies

GEBR. PFEIFFER

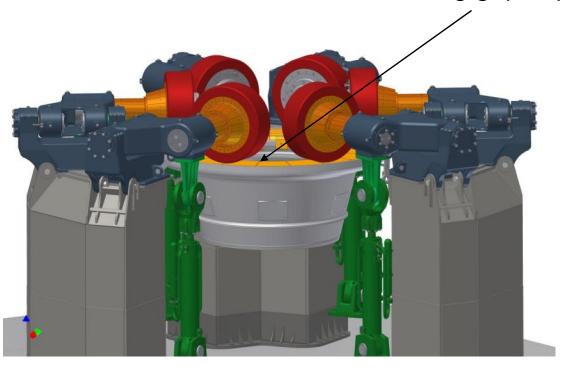
MultiDrive® up to 12 000 kW

- Table support with girth gear
- •2 to 6 drives


MVR mill – main function groups

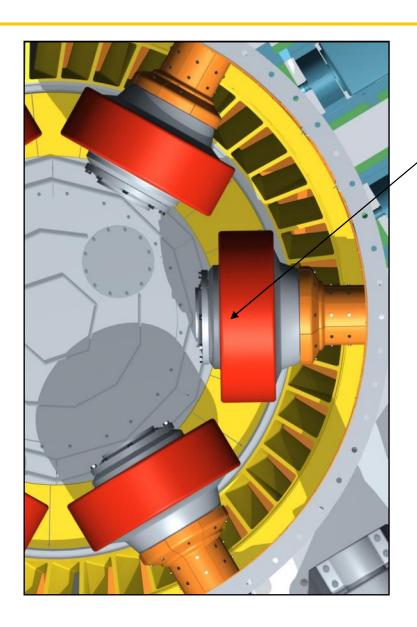
- SLS classifier
- Housing with nozzle ring and hotgas duct
- Grinding table
- Grinding rollers
- twin supports
- drive train options

Conventional Drive up to 7 000 kW

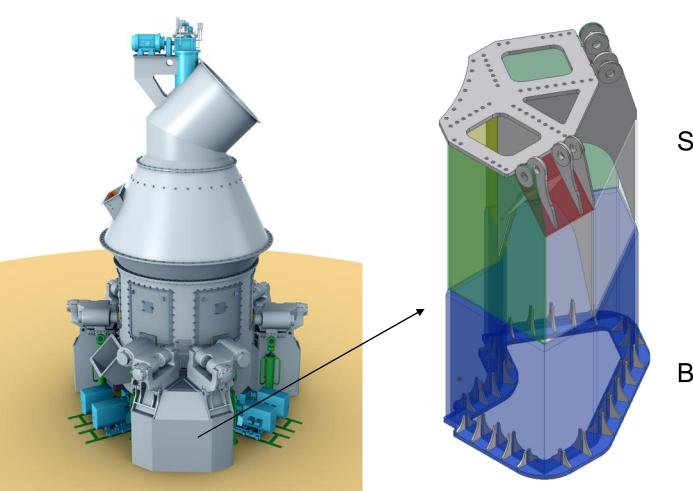


- Roller assembly consists of
 - Roller with cylindrical wear parts
 - Roller axle
 - Roller arm
 - Bearing stand
 - Hydraulic tensioning cylinder
 - Articulation piece, fork head and anchor plate
- Two rollers side by side on a common twin support

Grinding gap in parallel

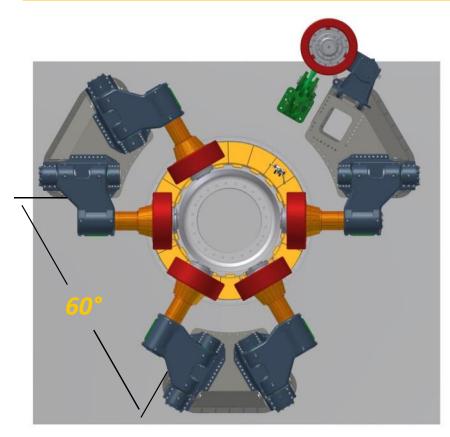


- Guided motion smooth run
- Grinding gap always in parallel
- Positive effects on power transmission
- Tensioning cylinder swing out roller for service

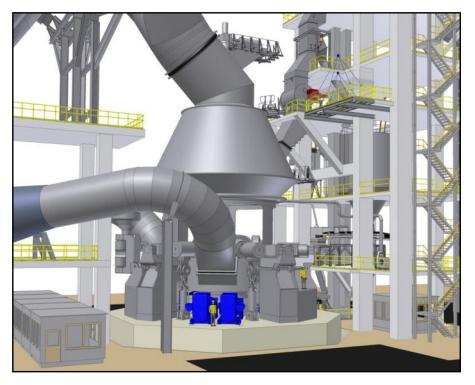

Symmetric wear parts

The modular roller system, with only 5 different sized roller modules, uses symmetric tyres and can provide capacities of up to 1,400 t/h

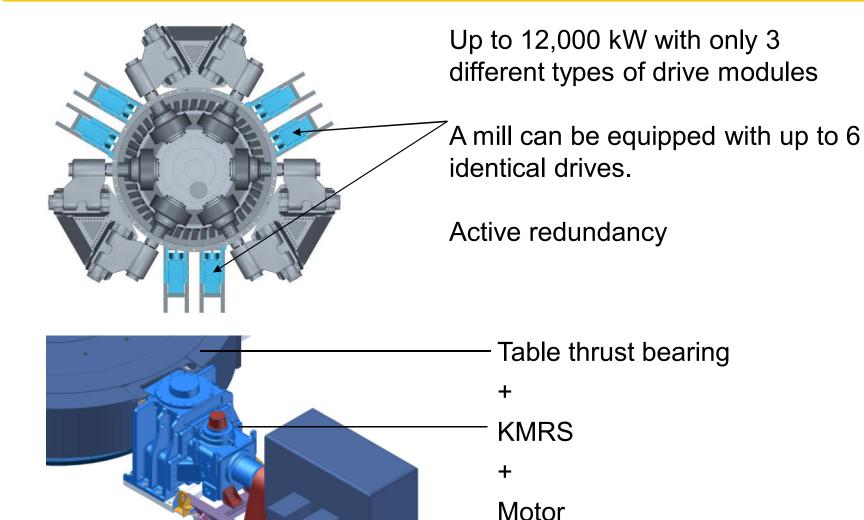
The symmetric design allows the tyres to be removed, flipped over and reinstalled to extend their wear life



Support


Base of support

Roller suspension


Active Redundancy:
Table support designed to take
unbalanced axial and radial forces

Advantages in plant layout: Wide angle between supports

Modular drive design MultiDrive®

Frequency converter

The PFEIFFER-MVR roller mill Essential design features

Active Redundancy

Up to 6 grinding rollers and 6 drive modules: mill operation continues even if a roller or drive module is under maintenance.

Hydraulic system for operation and maintenance

For maintenance purposes no extra component is required to swing the rollers out of the mill.

Parallel grinding gap

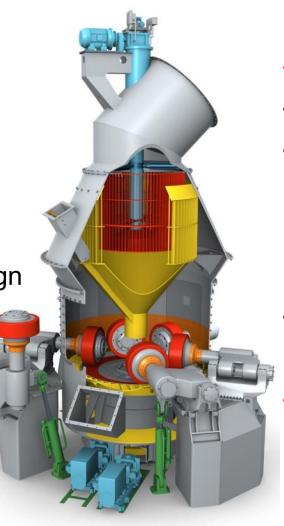
The geometry of the grinding elements in combination with our MVR suspension system ensures a parallel grinding gap in any operating point.

Modular drive design

Up to 12 000 kW with only 3 different types of drive modules. A mill can be equipped with up to 6 identical drive modules.

Symmetric wear parts

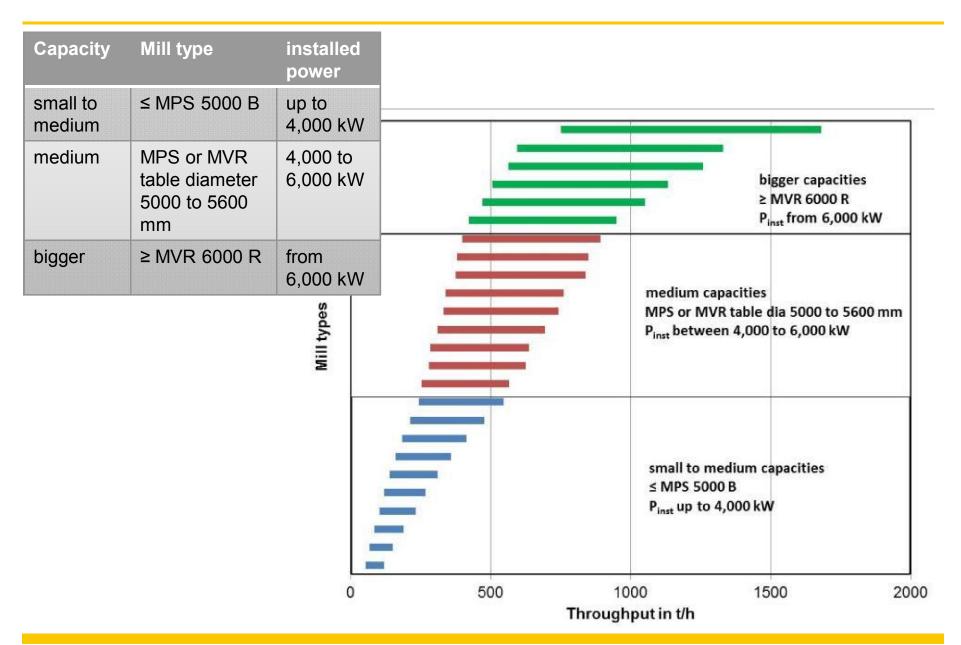
The modular roller system with only 5 roller modules and symmetric tyres provides capacities of up to 1 400 t/h. For an extended lifetime tyres can be turned in case of wear.


Space saving twin support

1 support for 2 roller modules for ease of maintenance work.

Unchanged

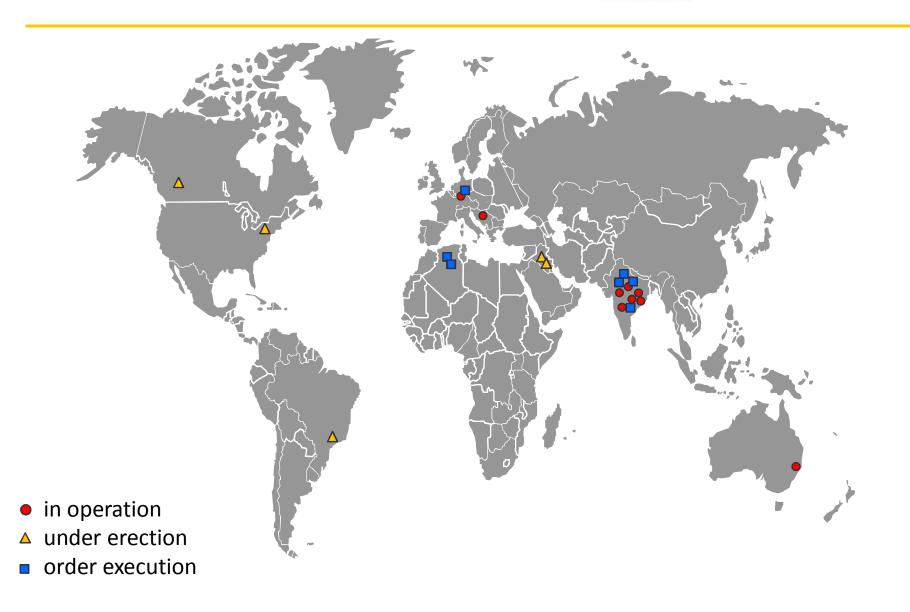
- Process Design
- Safety Factors
- Levels of spec.
 grinding force
- Nozzlering
- Gas Velocity Design
- Classifier
- Wear Protection



Changed / Improved

- Capacity Range
- Number of rollers
- Roller Suspension
 - Flat Table
 - Cylindrical Rollers
 - Parallel Grinding Gap
- Modular drive with variable speed
- Active Redundancy

Which mill to choose? MPS or MVR?


GEBR. PFEIFFER

MVR worldwide

MVR 6000 C-6 - technical features

	MVR 6000 C-6	
Number of rollers	6	
Roller diameter	2,120 mm	
Roller wear part weight	6 ton per roller	
Roller wear part material	High chromium alloy cast iron	
Installed drive power	6,700 kW (planetary drive)	
Classifier	SLS 5600 BC	हेलमेट पहिनये
Bag Filter	875,000 m³/h (operati 320 g/m³ (raw dust co <= 20 mg/nm³ (dust lo 12 mbar (pressure dr	ontent) oad outlet)

Operational results SHREE CEMENT Ltd. - RGU

MVR 6000 C-6	OPC	PPC
Clinker	90 %	56.5 %
Gypsum	8 %	6 %
Fly ash, wet/dry	2/0%	13.5 / 24.0 %
Clinker temperature	135 °C	135 °C
Feed moisture	1.1 %	2.3 %
Product rate	311 t/h	334 t/h
Fineness	2,840 Blaine	3,700 Blaine
Specific energy consumption (shaft: mill)	17.7 kWh/t	15.7 kWh/t

Operational results SHREE CEMENT Ltd. - BGU

MVR 6000 C-6	PSC	PPC
Clinker	45.8 %	57 %
Gypsum	4.2 %	5 %
Fly ash, wet/dry	50 % GBFS	7 / 31.0 %
Feed temperature	ambient	ambient
Feed moisture	6.1 %	0.8 %
Product rate	235 t/h	424 t/h
Fineness	3,830 Blaine	3,940 Blaine
Specific energy consumption (shaft: mill)	25.1 kWh/t	13.9 kWh/t

Operational results

GP Cement

		GGDI 3		di cement	
		G	Α	G	Α
Throughput	t/h	190	197	208	215
Feed moisture	%		9		2.5
Residual moisture	%	0.5	0.5	0.5	0.2
Fineness	cm²/g	4,200	4,400	3,800	3,800
Spec. energy cons. mill	kWh/t	26.3	24.8	22.8	21.5
G: Guarantee, A: Achieved					

GEBR. PFEIFFER

Cement Industry Challenges Low Carbon Technology Roadmap 2050

International Energy Agency St. Whose	Partners' roles		
iea International Energy Agency Wbcsd	Cement producer	Pfeiffer (GPSE) Grinding system	
Alternative fuel and raw materials	Flexibility in regard to changing market demands (cement) or market supply (coal, petcoke, fly ash, bottom ash, etc.)	e.g. XRF of single components, calculation of LSF, Grinding tests to evaluate behavior of material	
Thermal and electrical energy efficiency	Energy efficient system High reliability and net availability	e.g. Trials at Indian plant for grinding without external heat	

Cement Industry Challenges Low Carbon Technology Roadmap 2050

SONOMAP INSTALL		Partners' roles		
(ie	International Energy Agency WDCSC	Cement producer	Pfeiffer (GPSE) Grinding system	
ution	By-products of other processes that have to be taken "as-is"	Flexibility in regard to market supply (fly ash, bottom ash, etc.)	 e.g. XRF of single components e.g. Grinding tests to evaluate behavior of material 	
Clinker Substitution	 Special requirements for drying and grinding, target fineness Specific product characteristics are required Market acceptance has to be received for new products, e.g. Portland Limestone Cement 	Achievement of required product quality (especially cement)	 e.g. Grinding tests to evaluate behavior of material Optimization at plant site Process support Additional equipment (e.g. pre-hydration) 	
	Waste Heat Recovery (WHR)	X	Lowest possible heat input	
	New technologies including CCS	X	to be discussed	

Conclusion

- Pfeiffer mills in operation worldwide since many decades
- MPS is well proven technology
- MVR is in operation since 2006
- Energy-efficient system with high capacities (up to 12,000 tpd)
- Simple installation with low maintenance cost
- Active redundancy
- MultiDrive®

- Optimization is a continuous process
- Working together gives maximum feedback and response
 - → maximum performance
- All over support (process & mechanical)
- Training of people to set skills to high standards

© (2014) by Gebr. Pfeiffer SE

The content of this presentation is confidential and subject to copyright. Any use, publication or distribution to third parties without Gebr. Pfeiffer SE's written consent is prohibited.