Research on Energy Savings and Environmental Protection Measures in the Cement Industry in China

24th.OCT.2008

New Energy and Industrial Technology Development Organization (NEDO) Contractor: Taiheiyo Engineering

Location of the Cement Plant Selected for Site Investigation

Outline of the Research

(1) Purpose

•Energy savings and environmental protection measures in the Chinese cement plant shall be studied and proposed.

(2) Plant Investigated

• A cement plant in Heilongjiang and Shanxi Province

(3) Survey method

- •Preparation and transmittal of the questionnaire prior to the on-site survey and reviewing of pre-existing materials.
- •On-site survey (Aug. 20 to 27, 2008) ... Field confirmation of the plant facility and operating conditions.
- •Research in Japan ... Compilation and analysis of the survey results, identification of possible measures for energy savings and environmental protection, and estimation of improvement of such measures.

Yatai Haerbin Cement

Outline of the Surveyed Plant

Yatai Haerbin Cement

(1) System of the plant

- No.1 line: NSP Kiln (1070 tons/day)
- No.2 line: NSP kiln (2500 tons/day)

(2) Production volume (2007)

•Clinker production volume: 1.15 million tons/year

•Cement production volume: 2.2 million tons/year (Product types are P.O 42.5)

(3) Energy consumption

- Heat consumption: 945 kcal/kg cli (low calorific value basis)
- Electricity consumption : 92 kWh/t cem

Yatai Haerbin Cement

Raw Material and Clinker Burning Process

ITEM			DETAILS		
No.1 Line	Raw Mill	Vertical Ro	Vertical Roller Mill		
	Kiln	NSP Kiln	5-Stage Pre-heater, Single String 3 Channel kiln burner Coventional cooler		
	Coal Mill	Vertical Ro	Vertical Roller Mill		
No.2 Line	Raw Mill	Vertical Ro	Vertical Roller Mill		
	Kiln	NSP Kiln	5-Stage Pre-heater, Two String 4 Channel kiln burner Air beam cooler		
	Coal Mill	Vertical Ro	Vertical Roller Mill		

Finishing Process

Yatai Haerbin Cement

L i ne Number	M illNum ber	S ize	C apac ity	Pre- grinder	Separator
	No.3 CementMill	2.6m×13mL 1,250kW	25.5t/h		FLS
No.1 L i ne	No.4 CementMill	2.6m×13mL 1,250kW	25.5t/h	_	FLS
	No.5 CementMill	4.2m×11mL 2,800kW	90t/h	1	O-SEPA
No.2 L i ne	No.6 CementMill	4.2m ×13m⊥ 3.150k₩	150t/h	Roller Press	V-SEPA DYNAMIC- SEPA

O-SEPA: made in China

Areas for Saving Energy and Environmental Protection in a Cement Plant

Adoption and Effectiveness of Equipment for Saving Energy and Environmental Protection

Yatai Haerbin Cement

- B e c a u s e of introducing the most up-to-date equipments, the energy efficiency level is high.
- No.2 Line is clean and tidy. It seems to bring saving energy.
- However, further saving energy will be possible by introduction of facilities for higher energy efficiency etc.

Adoption and Effectiveness of Equipment for Saving Energy and Environmental Protection

Yatai Haerbin Cement

(1) Use of Pre-grinder and High-Efficiency Separator in Finishing Mill

No. 5 mill: Closed-loop ball mill with separator ⇒Installation of vertical roller mill as pre-grinder and O-SEPA H Expected saving energy 4.89 kWh/t-cement

Schematic structure of CKP Vertical Roller Mill

Schematic structure of O-SEPA H

(2)Improvement of Combustion Operation in a Kiln

Yatai Haerbin Cement

- Although the measurement of temperature, pressure, density
 - of O2 and CO2 in the kiln has been carried out, It is needed to do it for appropriate combustion operation more strictly.
- preventing fresh air intruding into the kiln and the preheater

(3) Use of Low-Pressure-Drop Type Cyclone in the Pre-heater Top Cyclone

Yatai Haerbin Cement

Reduction of power loss by decreasing pressure loss of the pre-heater top cyclone.
 ⇒Installation of the Low-Pressure-Drop Type Cyclone (HURRIVANE®)
 Pressure drop 30%

Expected energy saving

0.47 kWh/t-cement

Structure of Low-Pressure-Drop Type Cyclone (HURRIVANE[®])¹²

3 channel kiln burner has been used in No.1 line. If 4 channel kiln burner with high functionality is introduced in this line, It will produce good result on saving energy, improvement of effect combustibility, reduction of NOx emission, and improvement of clinker's quality.

4 Channel kiln burner

(5) Summary of Improvement in Saving Energy and Reducing the

Environmental Burden

Yatai Haerbin Cement

Equipment for Saving Energy and Environmental Protection	Effect on Saving Energy	Effect on Reduction of CO ₂ Emissions	Effect on Reduction of Environmental Burden	
 Use of Pre-grinder and High-Efficiency Separator to Finishing Mill 	4.89kWh/t-cem	4.5 kg-CO₂/t-cem	_	
(No.1Line)	3,080 MWh/y	2,862 t-CO ₂ /y		
(2)Improvement of Combustion Operation	38 Kcal/kg-cli	16 kg-CO₂/t-cli		
(No.1Line and No.2 Line)	38,080 Gcal/y	18,409 t-CO ₂ /y		
(3) Use of Low-Pressure-Drop Type Cyclone In the Pre-heater Top Cyclone	0.47 kWh/t-cli	0.4 kg-CO₂/t-cli	_	
(No.1Line)	164 MWh/y	153 t-CO ₂ /y		
(4) Introduction of new Kiln Burner	7 Kcal/kg-cli	2.9 kg-CO ₂ /t-cem	200ppm NOx.	
(No.1Line)	2,450 Gcal/y	1,020 t-CO ₂ /y	—	
Total		22,444 t-CO ₂ /y	_ 14	

Shanxi Qinling Cement

Outline of the Surveyed Plant

(1)System of the plant

Shanxi Qinling Cement

- No.1-No.4 line: wet-process Kiln (700 tons/day X 4) *these lines will be disposed.
- •No.5 line: NSP kiln (2000 tons/day)
- No.6 line: NSP kiln (2200 tons/day) (No. 7 line: NSP kiln (5000 tons/day))
 *No.7 line is in a trial run now.
- (2) Production volume (2007)
- All Cement production volume: 5 million tons/year
 Product types : P.O32.5, P.O42.5, P.C32.5, P.C42.5,
 P.F32.5, P.F42.5, P.F52.5,

(3) Energy consumption

- Heat consumption: 845 kcal/kg cli (low calorific value basis)
- Electricity consumption : 127.2 kWh/t cem

Major equipment

Shanxi Qinling Cement

Raw Material and Clinker Burning Process

ITEM			DETAILS		
No.5 Line	Raw Mill	Double Ro	Double Rotator Mill		
	Kiln	NSP Kiln	5-Stage Pre-heater, Two String 3 Channel kiln burner Air beam cooler		
	Coal Mill	Ball Mill			
No.6 Line	Raw Mill	Double Ro	Double Rotator Mill		
	Kiln	NSP Kiln	5-Stage Pre-heater, Single String 3 Channel kiln burner Air beam cooler		
	Coal Mill	Ball Mill			

Finishing Process

Shanxi Qinling Cement

L i ne Number	M illNumber	S ize	C apac ity	Pre− grinder	Separator
No.5	No.6 CementMill	3.8m×14mL 2,500kW	64t/h		O-SEPA
L'ne	No.7 CementMill	3.8m×14mL 2,500kW	64t/h		O-SEPA
No.6	No.8 CementMill	3.8m×14mL 2,500kW	63t/h		O-SEPA
L'ne	No.9 CementMill	3.8m×14mL 2,500kW	63t/h		O-SEPA
No.7	No.10 CementMill	3.8m×13mL 2,500kW	180t/h	Roller Press	O-SEPA V-SEPA
L i ne	No.11 CementMill	3.8m×13mL 2,500kW	180t/h	Roller Press	O-SEPA V-SEPA

O-SEPA : made in China 18

Areas for Saving Energy and Environmental Protection in a Cement Plant

Adoption and Effectiveness of Equipment for Saving Energy and Environmental Protection

<u>Shanxi Qinling Cement</u>

- B e c a u s e of introducing the most up-to-date equipments, the energy efficiency level is high.
- It seems that the top management make an effort to improve employees' cost conscience.
- However, further saving energy will be possible by introduction of facilities for higher energy efficiency etc.

Adoption and Effectiveness of Equipment for Saving Energy and Environmental Protection

Shanxi Qinling Cement

(1) Use of Pre-grinder and High-Efficiency Separator in Finishing Mill

No. 6-9 mills: Closed-loop ball mill with separator

⇒Installation of vertical roller mill as pre-grinder and O-SEPA H

Expected saving energy 8.19 kWh/t-cement

Schematic structure of CKP Vertical Roller Mill

Schematic structure of O-SEPA H

(2)Improvement of Combustion Operation in a Kiln

Shanxi Qinling Cement

22

Although the measurement of temperature, pressure, density of O2 and CO2 in the kiln has been carried out, It is needed to do it for appropriate combustion operation more strictly.
preventing fresh air intruding into the kiln and the pre-heater through chinks and keeping appropriate density of O2 and CO2

are necessity of saving energy and electricity.

(3) Use of Low-Pressure-Drop Type Cyclone in the Pre-heater Top Cyclone

<u>Shanxi Qinling Cement</u>

Reduction of power loss by decreasing pressure loss of the pre-heater top cyclone.
 ⇒Installation of the Low-Pressure-Drop Type Cyclone (HURRIVANE®)
 Pressure drop 30%

Expected saving energy

0.3 kWh/t-cement

Structure of Low-Pressure-Drop Type Cyclone (HURRIVANE[®])²³

3 channel kiln burner has been used in No.5 and No.6 line. If 4 channel kiln burner with high functionality is introduced in these lines, It will produce good result on saving energy, improvement of effect combustibility, reduction of NOx emission, and improvement of clinker's quality.

4 Channel kiln burner

(5) Summary of Improvement in Saving Energy and Reducing the

Environmental Burden

Shanxi Qinling Cement

Equipment for Saving Energy and Environmental Protection	Effect on Saving Energy	Effect on Reduction of CO ₂ Emissions	Effect on Reduction of Environmental Burden
(1) Use of Pre-grinder and High-Efficiency Separator to Finishing Mill	8.19 kWh/t-cem	7.6 kg-CO₂/t-cem	_
(No.5 Line and No.6 Line)	7,280 MWh/y	6,764 t-CO ₂ /y	
(2) Improvement of Combustion Operation	32 kcal/kg-Cli	13.3 kg-CO₂/t-cli	_
(No.5 Line and No.6 Line)	40,960 Gcal/y	17,060 t-CO ₂ /y	
(3) Use of Low-Pressure-Drop Type Cyclone in the Pre-heater Top Cyclone	0.32 kWh/t-cli	0.3 kg-CO₂/t-cli	_
(No.5 Line)	201MWh/y	187t-CO ₂ /y	
(4) Introduction of new kiln Burner	7.5 kcal/kg-Cli	3.1 kg-CO₂/t-cli	200ppm NOx
(No.5 Line and No.6 Line)	9,590 Gcal/y	3,994 t-CO ₂ /y	—
Total		28,005 t-CO ₂ /y	_ 25